Vertex heaviest paths and cycles in quasi-transitive digraphs

نویسندگان

  • Jørgen Bang-Jensen
  • Gregory Gutin
چکیده

A digraph D is called a quasi-transitive digraph (QTD) if for any triple x, y, z of distinct vertices of D such that (x, y) and (y, z) are arcs of D there is at least one arc from x to z or from z to x. Solving a conjecture by J. Bang-Jensen and J. Huang (J. Graph Theory, to appear), G. Gutin (Australas. J. Combin., to appear) described polynomial algorithms for finding a Hamiltonian cycle and a Hamiltonian path (if it exists) in a QTD. The approach taken in that paper cannot be used to find a longest path or cycle in polynomial time. We present a principally new approach that leads to polynomial algorithms for finding vertex heaviest paths and cycles in QTD’s with non-negative weights on the vertices. This, in particular, provides an answer to a question by N. Alon on longest paths and cycles in QTD’s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial algorithms for finding paths and cycles in quasi-transitive digraphs

A digraph D is called quasi-transitive if for any triple x, y, z of distinct vertices of D such that (x, y) and (y, z) are arcs of D there is at least one arc from x to z or from z to x. A minimum path factor of a digraph D is a collection of the minimum number of pairwise vertex disjoint paths covering the vertices of D. J. Bang-Jensen and J. Huang conjectured that there exist polynomial algor...

متن کامل

Minimum cycle factors in quasi-transitive digraphs

We consider the minimum cycle factor problem: given a digraph D, find the minimum number kmin(D) of vertex disjoint cycles covering all vertices of D or verify that D has no cycle factor. There is an analogous problem for paths, known as the minimum path factor problem. Both problems are NP-hard for general digraphs as they include the Hamilton cycle and path problems, respectively. In 1994 Gut...

متن کامل

Finding Cheapest Cycles in Vertex-weighted Quasi-transitive and Extended Semicomplete Digraphs

We consider the problem of finding a minimum cost cycle in a digraph with real-valued costs on the vertices. This problem generalizes the problem of finding a longest cycle and hence is NP-hard for general digraphs. We prove that the problem is solvable in polynomial time for extended semicomplete digraphs and for quasi-transitive digraphs, thereby generalizing a number of previous results on t...

متن کامل

Strongly Connected Spanning Subdigraphs with the Minimum Number of Arcs in Quasi-transitive Digraphs

We consider the problem (MSSS) of nding a strongly connected spanning subgraph with the minimum number of arcs in a strongly connected digraph. This problem is NP-hard for general digraphs since it generalizes the hamil-tonian cycle problem. We show that the problem is polynomially solvable for quasi-transitive digraphs. We describe the minimum number of arcs in such a spanning subgraph of a qu...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 163  شماره 

صفحات  -

تاریخ انتشار 1997