Vertex heaviest paths and cycles in quasi-transitive digraphs
نویسندگان
چکیده
A digraph D is called a quasi-transitive digraph (QTD) if for any triple x, y, z of distinct vertices of D such that (x, y) and (y, z) are arcs of D there is at least one arc from x to z or from z to x. Solving a conjecture by J. Bang-Jensen and J. Huang (J. Graph Theory, to appear), G. Gutin (Australas. J. Combin., to appear) described polynomial algorithms for finding a Hamiltonian cycle and a Hamiltonian path (if it exists) in a QTD. The approach taken in that paper cannot be used to find a longest path or cycle in polynomial time. We present a principally new approach that leads to polynomial algorithms for finding vertex heaviest paths and cycles in QTD’s with non-negative weights on the vertices. This, in particular, provides an answer to a question by N. Alon on longest paths and cycles in QTD’s.
منابع مشابه
Polynomial algorithms for finding paths and cycles in quasi-transitive digraphs
A digraph D is called quasi-transitive if for any triple x, y, z of distinct vertices of D such that (x, y) and (y, z) are arcs of D there is at least one arc from x to z or from z to x. A minimum path factor of a digraph D is a collection of the minimum number of pairwise vertex disjoint paths covering the vertices of D. J. Bang-Jensen and J. Huang conjectured that there exist polynomial algor...
متن کاملMinimum cycle factors in quasi-transitive digraphs
We consider the minimum cycle factor problem: given a digraph D, find the minimum number kmin(D) of vertex disjoint cycles covering all vertices of D or verify that D has no cycle factor. There is an analogous problem for paths, known as the minimum path factor problem. Both problems are NP-hard for general digraphs as they include the Hamilton cycle and path problems, respectively. In 1994 Gut...
متن کاملFinding Cheapest Cycles in Vertex-weighted Quasi-transitive and Extended Semicomplete Digraphs
We consider the problem of finding a minimum cost cycle in a digraph with real-valued costs on the vertices. This problem generalizes the problem of finding a longest cycle and hence is NP-hard for general digraphs. We prove that the problem is solvable in polynomial time for extended semicomplete digraphs and for quasi-transitive digraphs, thereby generalizing a number of previous results on t...
متن کاملStrongly Connected Spanning Subdigraphs with the Minimum Number of Arcs in Quasi-transitive Digraphs
We consider the problem (MSSS) of nding a strongly connected spanning subgraph with the minimum number of arcs in a strongly connected digraph. This problem is NP-hard for general digraphs since it generalizes the hamil-tonian cycle problem. We show that the problem is polynomially solvable for quasi-transitive digraphs. We describe the minimum number of arcs in such a spanning subgraph of a qu...
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 163 شماره
صفحات -
تاریخ انتشار 1997